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a b s t r a c t

In this study, the dynamic response of a pair of spur gears is analyzed when the gear set

has translational motion due to bearing deformation. A new dynamic model for the gear

set, considering translational motion, is proposed, in which the distance between the

centers of a pinion and a gear varies with time. Therefore, the proposed model regards

model regards them as constants. After deriving nonlinear equations of motion for the

gear set, the dynamic responses are computed by applying the Newmark time

integration method. This paper claims that the new model produces more accurate

dynamic responses in comparison to those of the previous model. Some dynamic

response differences between the new and previous models are demonstrated, and the

effects of damping and stiffness upon the dynamic responses are also investigated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Gears are considered to be one of the most important machine components and are widely used in various applications
such as automobiles, aircrafts, heavy machinery, and marine vehicles. Gears have many functions, including reducing
rotational speed, increasing available torque, or changing the direction of power transmission. In spite of the many
functions of gears, noise, and vibration continue to cause major troubles within their applications. The noise and vibration
from gears not only deteriorates the working environment, but also reduce the durability and reliability of machine
systems. Noise and vibration are closely related to the dynamic behavior of a pair of gears caused by gear mesh
deformation.

Many studies have been performed for the purpose of studying gear system dynamics. Related to gear dynamics, many
efforts have been made to analyze the gear mesh stiffness and deformation caused by tooth contact. Cornell [1] and
Tavakoli and Houser [2] modelled gear teeth as a cantilever beam. Huang and Liu [3] modelled a spur gear tooth as a
variable cross-section Timoshenko beam for the dynamic analysis of spur gears of involute profiles. Because gear teeth
have a non-uniform width with involute profiles, and because the contact position of the teeth varies with gear rotation,
tooth stiffness, and deformation are complex periodic functions. Tooth deflection is influenced mainly by cantilever beam
deflection, rigid-body tooth rotation, and contact deflection. Kuang and Lin [4] and Amabili and Fregolent [5] each
presented a model of the mesh stiffness while considering the contact ratio. Their models have variable stiffness within a
period, which can be divided into one-pair and two-pair contact stiffness. Kahraman [6] described the mesh stiffness as a
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square wave function in order to analyze the nonlinear dynamic of the spur gear. Kahraman and Blankenship [7]
investigated experimentally the influence of involute contact ratio on the torsional vibration behavior of a spur gear pair by
measuring the dynamic transmission error of several gear pairs using a specially designed gear test rig. Velex and Maatar
[8] introduced a mathematical gear model to analyze the influence of shape deviations and mounting errors on gear
dynamics. Velex and Ajmi [9] established a relation between dynamic tooth loads and quasi-static transmission errors in
helical gear sets.

On the other hand, mesh deformation is generally described with respect to the line of action. A simple model for mesh
deformation was proposed by Ozguven and Houser [10] and showed that mesh deformation is generated by only the
relative rotational gear motion. Kahraman and Singh [11] also used this same definition of mesh deformation, though they
later modified the definition to consider the translational motion of the gears due to bearing deformations and
transmission error [12]. However, they restricted the translational motion only in the direction along the line of action. By
allowing the translational motion of the gears to occur within a two-dimensional plane, Kahraman [6] and Lin and Parker
[13] proposed more realistic models for mesh deformation. Their models introduced pressure angle to the gear mesh
deformation because these models include the planar motions of the gears, which is not along the line of action. Kahraman
[14] also presented a three-dimensional model of a helical gear pair which accounts for the shaft and bearing flexibilities,
and the dynamic coupling among the transverse, torsional, axial, and rocking motions due to the gear mesh. To the authors’
knowledge, all previous studies have treated the pressure angle and the contact ratio as constants. In other words, the
variations in both pressure angle and contact ratio were not considered when determining the gear mesh deformation.
However, when a pair of gears possesses translational motion, the distance between the gear centers can be changed;
therefore, it can be concluded that the pressure angle and the contact ratio are influenced by the center distance.

In order to consider translational motion due to bearing deformation, this study investigates the dynamic responses of a
pair of spur gears consisting of a pinion and a gear. Considering the dependence of the pressure angle and the contact ratio
on the translational motion of gears, a dynamic model for a pair of spur gears is newly proposed. Based on the proposed
model, nonlinear and coupled equations of motion are derived. After expressing the equations within a matrix-vector form,
the Newmark time integration method [15] is applied to obtain the dynamic responses for the pair of spur gears.
Furthermore, the dynamic responses for the proposed model are compared to the responses for the previous model. In
addition, the effects of various dampings, bearing stiffnesses, and gear mesh stiffnesses on the dynamic responses are
studied.

2. Modelling of a pair of spur gears

Fig. 1 considers a pair of super gears consisting of a pinion and a gear. An external torque M exerts itself upon the pinion.
The pinion has mass m1 and a mass moment of inertia I1 while the gear has mass m2 and a mass moment of inertia I2. The
pinion and gear can possess rigid-body motion including translation and rotation. It is assumed in this paper that the gear
set maintains only in-plane motion. This means that all motion occurs within the two-dimensional plane. The pinion and
gear are supported by a pair of deformable bearings which can be modelled as linear springs and viscous dampers. The
bearing stiffnesses of both the pinion and the gear are denoted by k1 and k2, respectively. The radial bearing damping
coefficients of the pinion and gear are given by c1 and c2, respectively, and the torsional bearing damping coefficients are
given by ct1 and ct2. The pinion and gear, except for the teeth, are assumed to be rigid bodies. However, the teeth are
regarded as flexible cantilever beams, because they are deformed by both bending and shear. The gear mesh stiffness is
treated as a time-varying stiffness and will be discussed in more detail later.

The motion of the gear set can be defined with six generalized coordinates. The displacements of both the pinion and
gear can be expressed via translational and rotational coordinates if they have planar motions. In Fig. 2, the dashed and
solid lines represent the pair of spur gears before and after motion, respectively. Points O1 and O2 are the axis centers of the
pinion and gear, which relocate to points C1 and C2 after the motion is completed. The mass centers of the pinion and gear
are denoted by G1 and G2, respectively. The displacement of the pinion is given by translational coordinates, x1 and y1, and
an angular coordinate y1, while the displacement of the gear is given by x2, y2, and y2. By denoting the displacement vectors
Fig. 1. Model of a pair of spur gears.
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Fig. 2. Configuration and generalized coordinates for a pair of spur gears.
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Fig. 3. Gear mesh model for a pair of spur gears.

W. Kim et al. / Journal of Sound and Vibration 329 (2010) 4409–4421 4411
for the mass centers of both the pinion and the gear by r1 and r2, these vectors are given by

r1 ¼ ðx1þe1 cosy1Þiþðy1þe1 siny1Þj and r2 ¼ ðx2þe2 cosy2þdÞiþðy2þe2 siny2Þj (1)

where e1 and e2 are the eccentricities of the pinion and gear, and i and j are unit vectors along the x and y axes, respectively.
Since the axis centers have displacements due to the translational motions of the pinion and gear, the center distance d

changes to d0 after the motion. The changed center distance d0 is given by

d0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x1þdÞ2þðy2�y1Þ

2
q

(2)

A gear mesh model for the pair of spur gears in which the pinion and gear have translational rigid-body motions is
presented in Fig. 3. The meshes of the pinion and gear may be modelled as time-varying gear mesh stiffness km, gear mesh
damping coefficient cm, and the transmission error on the line of action e. This line of action is defined as the common
tangent line of the base circles in the gear set having involute tooth form. The pressure angle a is defined as the angle
between the line of action and the direction of velocity at the pitch point. The angle c represents the position of the gear
relative to the pinion, and the radii of the base circles for the pinion and the gear are denoted by R1 and R2, respectively.

The gear mesh deformation needs to be newly defined when the pinion and gear exhibit translational motions. For this
case, the pressure angle is no longer constant. Recall that the pressure angle was regarded as a constant within all of the
previous studies. The mesh deformation is defined along the line of action. Since the center distance d0 is a function of x1,
y1, x2, and y2, the pressure angle can be changed with time. In other words, when the pinion and gear exhibit translational
motions, the pressure angle is not constant, but instead is a function of gear position. For the displacements in Fig. 3, the
pressure angle may be expressed as

a¼ cos�1 R1þR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x1þdÞ2þðy2�y1Þ

2
q (3)

The position angle c is given by

c¼ tan�1 y2�y1

x2�x1þd
(4)
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Fig. 4. Gear mesh stiffness with the contact ratio mp and the mesh period Tm.
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According to Kahraman [6] and Lin and Parker [13], the gear mesh deformation can be written as

d¼ ðx2�x1Þ sinða�cÞþðy2�y1Þ cosða�cÞþR1y1þR2y2 (5)

where the transmission error e is neglected. The difference between the proposed and the previous mesh deformation
equations is whether or not a and c are functions of the displacements of the pinion and the gear. In other words, this
study considers the effects of the translational motions of the gear set on the pressure angle and the gear position angle,
while the previous studies neglected these effects.

The modelling of gear mesh stiffness is important in analyzing the dynamic responses of the spur gear set. Even though
many researchers have proposed various models for mesh stiffness, their models are not simple because they considered
the deflections of gear teeth due to the bending and shear deformations, rigid-body rotation, and contact deformation of
the tooth. Moreover, the contact ratio, which is the average mesh on the line of action, complicates mesh stiffness
modelling. However, for simplicity of analysis, this study adopts the mesh stiffness model proposed by Kahraman [6].
In this model, mesh stiffness is described as a periodic function with a square wave form.

The contact ratio is closely related to the variation in gear mesh stiffness. In order for a pair of gears to obtain smooth
continuous tooth action, when one pair of teeth loses contact with each other, a succeeding pair of teeth should come into
engagement immediately. It is desirable that tooth contact overlaps as much as possible. A measure of this overlapping
action is the contact ratio, which can be expressed by

mp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1�R2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2�R2
2

q
�d sina

pb
(6)

where A1 and A2 are the radii of the addendum circles for the pinion and the gear, and pb is the base pitch.
This study adopts a time-varying gear mesh stiffness suggested by Tavakoli and Houser [2] and Chaari et al. [16]. A non-

step model for gear mesh stiffness is presented in Fig. 4, when the spur gear set has the contact ratio mp and a mesh period
of Tm. The mesh stiffness with the mesh period Tm is divided into a one-pair and a two-pair contact zones. When the
number of the gear teeth is N and the rotational speed of the gear is o, the mesh period Tm is determined by the rotational
speed of the gear and the number of teeth as follows:

Tm ¼ 2p=No (7)

The time-varying gear mesh stiffness, shown in Fig. 4, is computed according to Tavakoli and Houser [2] and Chaari
et al. [16]. The maximum value of stiffness, ku, is in the two-pair contact zone while the minimum value, kl, is in the
one-pair contact zone. The proportions of the one-pair and two-pair contact zones are determined by the contact ratio.
For any integer n, the two-pair contact zone is from (n�1)Tm to (mp+n�2)Tm and the one-pair contact zone is from
(mp+n�2)Tm to nTm.
3. Derivation of the equations of motion

The equations of motion for a pair of spur gears, shown in Figs. 1–3, can be derived via the six generalized coordinates
x1, y1, y1, x2, y2, and y2. After expressing the kinetic energy, the potential energy and Rayleigh’s dissipation function of the
spur gears in terms of the generalized coordinates, they are substituted into Lagrange’s equation in order to obtain the
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equations of motion. Since the gear set has planar motion, the kinetic energy T can be expressed as

T ¼ ðm1 _r
2
1þ I1

_y
2

1þm2 _r
2
2þ I2

_y
2

2Þ=2 (8)

where the superimposed dot stands for differentiation with respect to time. When considering the bearings and tooth
deformations, the potential energy V can be written as

V ¼ ½k1ðx
2
1þy2

1Þþk2ðx
2
2þy2

2Þþkmd
2
�=2 (9)

Recall km is the time-varying stiffness and d is a function of x1, y1, y1, x2, y2, and y2. Rayleigh’s dissipation function due to
the radial/torsional bearing damping and gear mesh damping is given by

F ¼ ½c1ð _x
2
1þ _y

2
1Þþc2ð _x

2
2þ _y

2
2Þþðct1

_y
2

1þct2
_y

2

2Þþcm
_d

2
�=2 (10)

All of the generalized forces are zero except for the generalized force corresponding to the coordinate y1. Therefore, the
generalized forces can be represented by

Qx1
¼Qy1

¼ Qx2
¼Qy2

¼Qy2
¼ 0, Qy1

¼M (11)

The equations of motion are derived using Lagrange’s equation, which is given by

@

@t

@T

@ _qi

� �
þ
@F

@ _qi

�
@T

@qi
þ
@V

@qi
¼Qi for qi ¼ x1, y1, y1, x2, y2, y2 (12)

Substitution of Eqs. (8)–(11) into Eq. (12) leads to the following equations of motion:

m1ð €x1�e1
€y1 siny1�e1

_y
2

1 cosy1Þþc1 _x1

þcmd,x1
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk1x1þkmdd,x1

¼ 0 (13)

m1ð €y1þe1
€y1 cosy1�e1

_y
2

1 siny1Þþc1 _y1

þcmd,y1
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk1y1þkmdd,y1

¼ 0 (14)

ðI1þm1e2
1Þ
€y1�m1e1ð €x1 siny1� €y1 cosy1Þþct1

_y1

þcmd,y1
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþkmdd,y1

¼M (15)

m2ð €x2�e2
€y2 siny2�e2

_y
2

2 cosy2Þþc2 _x2

þcmd,x2
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk2x2þkmdd,x2

¼ 0 (16)

m2ð €y2þe2
€y2 cosy2�e2

_y
2

2 siny2Þþc2 _y2

þcmd,y2
ð _x2d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk2y2þkmdd,y2

¼ 0 (17)

ðI2þm2e2
2Þ
€y2�m2e2ð €x2 siny2� €y2 cosy2Þþct2

_y2

þcmd,y2
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþkmdd,y2

¼ 0 (18)

where the comma denotes partial differentiation, e.g., d,x1
¼ @d=@x1

d,x1
¼�sinða�cÞþ½ðx2�x1Þ cosða�cÞ�ðy2�y1Þ sinða�cÞ�ða,x1

�c,x1
Þ (19)

d,y1
¼�cosða�cÞþ½ðx2�x1Þ cosða�cÞ�ðy2�y1Þ sinða�cÞ�ða,y1

�c,y1
Þ (20)

d,x2
¼ sinða�cÞþ½ðx2�x1Þcosða�cÞ�ðy2�y1Þsinða�cÞ�ða,x2

�c,x2
Þ (21)

d,y2
¼ cosða�cÞþ½ðx2�x1Þcosða�cÞ�ðy2�y1Þsinða�cÞ�ða,y2

�c,y2
Þ (22)

d,y1
¼ R1, d,y2

¼ R2 (23)

in which

a,x1
¼�a,x2

¼�
ðR1þR2Þðx2�x1þdÞ

½ðx2�x1þdÞ2þðy2�y1Þ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x1þdÞ2

q
þðy2�y1Þ

2
�ðR1þR2Þ

2
(24)

a,y1
¼�a,y2

¼�
ðR1þR2Þðy2�y1Þ

½ðx2�x1þdÞ2þðy2�y1Þ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x1þdÞ2

q
þðy2�y1Þ

2
�ðR1þR2Þ

2
(25)

c,x1
¼�c,x2

¼
y2�y1

ðx2�x1þdÞ2þðy2�y1Þ
2

, c,y1
¼�c,y2

¼�
x2�x1þd

ðx2�x1þdÞ2þðy2�y1Þ
2

(26)

As shown in Eqs. (13)–(18), the equations of motion are nonlinear and are completely coupled to one another.
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The derived nonlinear equations of motion can be represented in a matrix-vector form. This matrix-vector form is
useful in computing dynamic responses when applying a numerical time integration algorithm. The matrix-vector form of
the nonlinear equations can be written as

MðxÞ €xþNðx, _xÞ ¼ f (27)

where x is the displacement vector, M is the mass matrix, N is the nonlinear internal force vector, and f is the external force
vector as follows:

x¼ fx1,y1,y1,x2,y2,y2g
T

M¼

m1 0 �m1e1 siny1 0 0 0

0 m1 m1e1 cosy1 0 0 0

�m1e1 siny m1e1 cosy1 I1þm1e2
1 0 0 0

0 0 0 m2 0 �m2e2 siny2

0 0 0 0 m2 m2e2 cosy2

0 0 0 �m2e2 siny2 m2e2 cosy2 I2þm2e2
2

2
6666666664

3
7777777775

N¼

�m1e1
_y

2

1 cosy11þc1 _xþcmd,x1
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk1x1þkmdd,x1

�m1e1
_y

2

1 sin y1þc1 _y1þcmd,y1
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk1y1þkmdd,y1

ct1
_y1þcmd,y1

ð _x1d,x1
þ _y1d,y1

þ _y1d,y1
þ _x2d,x2

þ _y2d,y2
þ _y2d,y2

Þþkmdd,y1

�m2e2
_y

2

2 cosy2þc2 _x2þcmd,x2
ð _x1d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk2x2þkmdd,x2

�m2e2
_y

2

2 sin y2þc2 _y2þcmd,y2
ð _x2d,x1

þ _y1d,y1
þ _y1d,y1

þ _x2d,x2
þ _y2d,y2

þ _y2d,y2
Þþk2y2þkmdd,y2

ct2
_y2þcmd,y2

ð _x1d,x1
þ _y1d,y1

þ _y1d,y1
þ _x2d,x2

þ _y2d,y2
þ _y2d,y2

Þþkmdd,y2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

f ¼ f0,0,M,0,0,0gT (28)

The displacement vector is a 1�6 column vector in which the elements are the generalized coordinates, x1, y1, y1, x2, y2,
and y2. It should be noted that the mass matrix M is a function of the displacement vector x, and the nonlinear internal
force vector N is a function of the displacement vector x and the velocity vector _x.

The equations of motion, as given in Eqs. (13)–(18), may be reduced to equations derived from previous studies. These
studies assumed that the pressure angle was not influenced by the translational motion. In other words, the pressure angle
and the contact ratio were independent of the translational coordinates, x1, y1, x2, and y2. Therefore, the pressure angle a
was regarded as a constant and the position angle c was not introduced. When the pressure angle is assumed to be
unaffected by the translational displacement, the pressure angle and the position angle can be given by

a¼ cos�1ðR1þR2Þ=d, c¼ 0 (29)

and the gear mesh deformation of Eq. (5) is redefined as

d¼ ðx2�x1Þ sinaþðy2�y1Þ cosaþR1y1þR2y2 (30)

For this case, the governing equations of Eqs. (13)–(18) can be simplified into the following equations:

m1ð €x1�e1
€y1 siny1�e1

_y
2

1 cosy1Þþc1 _x1�cm
_d sinaþk1x1�kmd sina¼ 0 (31)

m1ð €y1þe1
€y1 cosy1�e1

_y
2

1 siny1Þþc1 _y1�cm
_d cosaþk1y1�kmd cosa¼ 0 (32)

ðI1þm1e2
1Þ
€y1�m1e1ð €x1 sin y1� €y1 cosy1Þþct1

_y1þcmR1
_dþkmR1d¼M (33)

m2ð €x2�e2
€y2 siny2�e2

_y
2

2 cosy2Þþc2 _x2þcm
_d sinaþk2x2þkmd sina¼ 0 (34)

m2ð €y2þe2
€y2 cosy2�e2

_y
2

2 siny2Þþc2 _y2þcm
_d cosaþk2y2þkmd cosa¼ 0 (35)

ðI2þm2e2
2Þ
€y2�m2e2ð €x2 siny2� €y2 cosy2Þþct2

_y2þcmR2
_dþkmR2d¼ 0 (36)

4. Analysis of the dynamic responses

In order to verify the equations of motion derived in this paper, the time responses obtained from the proposed
equations are compared to the time response from the equations of Umezawa et al. [17]. All the time responses in this
study are computed by the Newmark method. Using the notations of this paper, the equations of motion presented by
Umezawa et al. can be represented by

I1
€y1þct1

_y1þcmR1ðR1
_y1þR2

_y2ÞþkmR1ðR1y1þR2y2Þ ¼ T (37)

I2
€y2þct2

_y2þcmR2ðR1
_y1þR2

_y2ÞþkmR2ðR1y1þR2y2Þ ¼ 0 (38)
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The spur gear pairs have the rotating speed of 1700 rev/min, the gear mesh damping coefficient of cm=10 N m/s, and the
bearing damping coefficients ct1=ct2=10 N m s. The other material properties and dimensions have the same values as
those of Ref. [17]. The main difference between the present study and Ref. [17] is whether the translational motions or
shaft vibrations are considered or not. As seen in Eqs. (37) and (38), Umezawa et al. derived only the equations for
rotational motion for spur gear pairs. The time responses for the acceleration of a point 7 cm apart from the pinion center
are computed by using the equations of both Ref. [17] and the present study. The results of computations are plotted in
Fig. 5, which shows some differences in the magnitudes of vibration. Comparing the results of Ref. [17] (Fig. 5(a)) with the
results of the present study (Figs. 5(b) and (c)), the vibration amplitudes of the present study are relatively larger than
those of Ref. [17]. The reason is because the present study includes the shaft vibration which is not considered in Ref. [17].
It is also observed from Figs. 5(b) and (c) that the vibration magnitude increases as the bearing stiffness decreases from
kb=107 to 106 N/m. Therefore, the spur gear set model of this study is more realistic than the model of Ref. [17].

For the dynamic analysis of spur gear pairs, more numerical computations are carried out and the dynamic responses of
spur gears are obtained. The spur gear system used in computation has the following data. The tooth numbers for the
pinion and the gear are 20 and 30, respectively. The initial pressure angle is given as 201, while the initial distance between
the centers of the pinion and the gear is given as 50 mm. On the other hand, the base pitch is 5.9 mm, and the torque
applied to the pinion is 45 N m. The other parameters for the gear set are summarized in Table 1. In order to compute the
time responses of the gear set, the time step size is selected as Dt=10�9 s.

The dynamic responses of the proposed new model are compared to those of the previous model. As mentioned
previously, the main difference is that the new model considers translational motion due to bearing deformation while the
previous model does not. Therefore, the new model has a time-dependent pressure angle and contact ratio, while the
previous model has a constant pressure angle and contact ratio. The difference between the new and previous models is
shown in Fig. 6 which illustrates the time responses for mesh deformation. If the time axis of Fig. 6 is magnified, as shown
in Fig. 7, some differences are observed in the mesh periods. In Fig. 7, T1 and T2 correspond to (mp�1)Tm and (2�mp)Tm of
Fig. 4, respectively. T1 and T2 of the new model are different from those of the previous model, and the sum of T1 and T2 of
the new model is also different from that of the previous model. This means that the new and previous models have
different contact ratios and mesh periods during the gear set rotation.
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Table 1
Gear set parameters.

Pinion Gear

Tooth number 20 30

Base circle radius (mm) 18.8 28.2

Addendum circle radius (mm) 22 32

Mass (g) 78.4 176.5

Mass moment of inertia (kg m2) 1.39�10�5 7.01�10�5

Radial damping coefficient (N s/m) 5.6 8.4

Gear mesh damping coefficient (N s/m) 1.8 1.8

Torsional damping coefficient (N m s) 0.1 0.1

Bearing stiffness (N/m) 106 106

Mesh stiffness during one-pair contact (N/m) 0.75�108 0.75�108

Mesh stiffness during two-pair contact (N/m) 1.25�108 1.25�108
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The differences can be also observed within the computed responses for the new and previous models, such as
displacements and accelerations. Fig. 8 presents the differences in the radial displacements, r1 and r2, between the new and
previous models. The radial displacements r1 and r2 are defined by r1=(x1

2+y1
2)1/2 and r2=(x2

2+y2
2)1/2, respectively. The

respective differences between the new and previous models in r1 and r2 are denoted by Dr1 and Dr2. As seen in Fig. 8, the
radial displacement of the pinion, r1, has a larger difference between the new and previous models when compared to
the displacement of the gear, r2. The radial accelerations of the pinion for the new and previous models are plotted in Fig. 9,
where ar1 and ar2 are the radial accelerations of the pinion and gear, respectively. The pinion acceleration obtained from
the new model is very different from the acceleration obtained from the previous model. From the comparisons of the
mesh deformations and the radial displacements/accelerations, it can be inferred that the new model is more accurate than
the previous model because it considers the translational motion which is not considered in the previous model.

It is valuable to investigate the damping effects on the dynamic responses of the gear set. As mentioned before, the gear
set has three kinds of damping: the radial bearing damping (c1 and c2), the gear mesh damping (cm), and the torsional
bearing damping (ct1 and ct2). In order to analyze the damping effects, four cases of damping coefficients are discussed in
this study. Case 1 considers all of the damping effects. The damping coefficients of this case are given by c1=5.6, c2=8.4,
cm=1.8 N s/m, and ct1=ct2=0.1 N m s. Case 2 has no radial bearing damping, so this case is defined by c1=c2=0, cm=1.8 N s/m,
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and ct1=ct2=0.1 N m s. Case 3 corresponds to the case without gear mesh damping having the values c1=5.6, c2=8.4,
cm=0 N s/m, and ct1=ct2=0.1 N m s. Case 4 involved no torsional bearing damping and is described by c1=5.6, c2=8.4,
cm=1.8 N s/m, and ct1=ct2=0. For these four cases, the dynamic responses for the radial displacements of the pinion are
computed and plotted in Fig. 10. No difference in the radial displacements for Cases 1 and 3 is found. This implies that the
gear mesh damping has little effect on the radial displacement. When comparing Cases 2 and 4, the torsional bearing
damping has a larger influence on the radial displacement decrease, in comparison to that of the radial bearing damping.
Consider the pinion subjected to constant torque M when the gear set has no torsional damping. In this case, the angular
velocity of the pinion y1 monotonically increases with time. The reason is because the equation of motion for the pinion,
Eq. (33), which has no term of y1, is a first-order differential equation with respect to _y1. The radial displacement of the
pinion, r1, also increases with the angular velocity. Therefore, the torsional bearing damping has a great effect on the
dynamics of the gear set.

The effects of bearing stiffness on radial displacement and gear mesh deformation are analyzed. Fig. 11 presents the
time histories for the radial displacements of the pinion for the various values of bearing stiffness. As this figure shows, the
vibration amplitude of the radial displacement increases as the bearing stiffness decreases. Another observation of Fig. 11
is that the period of radial vibration decreases with bearing stiffness. These behaviors of the radial displacement are
expected. The gear mesh deformations caused by the variations in bearing stiffness are shown in Fig. 12. Figs. 12(a)–(c)
correspond to the bearing stiffnesses of 106, 5�106, and 107 N/m, respectively. These figures demonstrate that an increase
in bearing stiffness results in a small mesh deformation change. Therefore, it can be concluded from Figs. 11 and 12 that
the bearing stiffness has a large effect on radial displacement, but it has only a small effect on mesh deformation.

The bearing stiffness also has an influence on the pressure angle and the contact ratio of spur gear pairs. For the bearing
stiffness values of kb=106, 5�106, and 107 N/m, the time histories for the pressure angle and contact ratio are plotted in
Fig. 13. As shown in this figure, the fluctuation magnitudes of the pressure angle and contact ratio decrease with the
bearing stiffness. This is easily expected because the shaft flexibility results in the changes of the pressure angle and
contact ratio. However, it is interesting that the pressure angle decreases with the bearing stiffness while the contact ratio
increases with the stiffness. Furthermore, the proposed model of this study enables to predict the amounts of pressure
angle and contact ratio in a steady state. For example, the steady-state values of the pressure angle and contact ratio are
given by 18.381 and 1.67, respectively, when kb=106 N/m.
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In order to examine the influence of gear mesh stiffness on radial displacement and gear mesh deformation, the radial
displacements and the mesh deformations are computed for three cases of mesh stiffness. Case 1 is for kl=0.55�108 and
ku=0.77�108 N/m, Case 2 is for kl=1.07�108 and ku=1.53�108 N/m, and Case 3 is for kl=5.05�108 and ku=7.31�108 N/m.
Cases 1, 2, and 3 correspond to Young’s modulus of the gear system material 45�109, 21�1010, and 105�1010 Pa,
respectively. As shown in Fig. 14, Cases 2 and 3 have no noticeable difference in radial displacement; however, Case 1 has a
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relatively high-frequency vibration in comparison to those of Cases 2 and 3. In Fig. 15, the gear mesh deformations are
plotted for the above three cases. The mesh deformation of Case 1 is much larger than those of Cases 2 and 3. Therefore,
it can be induced that the high-frequency vibration of Case 1 shown in Fig. 14 originates from gear mesh deformation.
5. Summary and conclusions

In this study, the dynamic behaviors of a pair of spur gears were analyzed with translational motion due to bearing
deformation. When considering translational motion, a new model for a pair of spur gears was proposed, and then the
nonlinear equations of motion were derived. Based on the equations of motion, the dynamic responses were computed by
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applying the Newmark time integration method. Furthermore, this paper presents the influences of various mechanical
properties such as damping and stiffness on the dynamic responses.

The results of this study can be summarized as follows:
(1)
 The proposed new model has a time-dependent pressure angle and contact ratio; therefore, the new model produces a
more accurate dynamic response than does the previous model.
(2)
 The gear mesh damping has little effect on the dynamic responses for the radial displacements of a gear set.

(3)
 The torsional bearing damping has a stronger effect on the dynamic responses of a gear set than does the radial bearing

damping.

(4)
 The bearing stiffness has a significant effect upon both the amplitude and period of the radial vibration of a gear set,

but has little effect on the mesh deformation.

(5)
 The increase in gear mesh stiffness causes decreases in the amplitude and period of the vibration of the gear mesh

deformation; however, the mesh stiffness has little effect on the radial vibration of a gear set.

(6)
 The pressure angle decreases and the contact ratio increases as the bearing stiffness increases.
References

[1] R.W. Cornell, Compliance and stress sensitivity of spur gear teeth, Journal of Mechanical Design, Transaction of ASME 103 (2) (1981) 447–459.
[2] M.S. Tavakoli, D.R. Houser, Optimum profile modifications for the minimization of static transmission errors of spur gears, Journal of Mechanisms

Transmissions and Automation in Design, Transaction of ASME 108 (1) (1986) 86–95.
[3] K.J. Huang, T.S. Liu, Dynamic analysis of a spur gear by the dynamic stiffness method, Journal of Sound and Vibration 234 (2) (2000) 311–329.
[4] J.H. Kuang, A.D. Lin, Theoretical aspects of torque responses in spur gearing due to mesh stiffness variation, Mechanical Systems and Signal Processing

17 (2) (2003) 255–271.
[5] M. Amabili, A. Fregolent, A method to identify modal parameters and gear errors by vibrations of a spur gear pair, Journal of Sound and Vibration 214

(2) (1998) 339–357.
[6] A. Kahraman, Load sharing characteristics of planetary transmissions, Mechanism and Machine Theory 29 (8) (1994) 1151–1165.
[7] A. Kahraman, G.W. Blankenship, Effect of involute contact ratio on spur gear dynamics, Journal of Mechanical Design, Transaction of ASME 121 (1)

(1999) 112–118.
[8] P. Velex, M. Maatar, A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior, Journal of

Sound and Vibration 191 (5) (1996) 629–660.
[9] P. Velex, M. Ajmi, Dynamic tooth loads and quasi-static transmission errors in helical gears—approximate dynamic factor formulae, Mechanism and

Machine Theory 42 (11) (2007) 1512–1526.
[10] H.N. Ozguven, D.R. Houser, Dynamic analysis of high speed gears by using loaded static transmission error, Journal of Sound and Vibration 125 (1)

(1998) 71–83.
[11] A. Kahraman, R. Singh, Nonlinear dynamics of a spur gear pair, Journal of Sound and Vibration 142 (1) (1990) 49–75.
[12] A. Kahraman, R. Singh, Nonlinear dynamics of a geared rotor-bearing system with multiple clearances, Journal of Sound and Vibration 144 (3) (1991)

469–506.
[13] J. Lin, R.G. Parker, Mesh stiffness variation instabilities in two-stage gear systems, Journal of Vibration and Acoustics, Transaction of the ASME 124 (1)

(2002) 68–76.
[14] A. Kahraman, Effect of axial vibrations on the dynamics of a helical gear pair, Journal of Vibration and Acoustics, Transaction of ASME 115 (1) (1993)

33–39.
[15] N.M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, Proceedings of ASCE 85 (EM3) (1959)

67–94.
[16] F. Chaari, W. Baccar, M.S. Abbes, M. Haddar, Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear

transmission, European Journal of Mechanics–A/Solid 27 (2008) 691–705.
[17] K. Umezawa, T. Sato, J. Ishikawa, Simulation of rotational vibration of spur gears, Bulletin of JSME 27 (1984) 102–109.


	Dynamic analysis for a pair of spur gears with translational motion due to bearing deformation
	Introduction
	Modelling of a pair of spur gears
	Derivation of the equations of motion
	Analysis of the dynamic responses
	Summary and conclusions
	References




